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The problem of guiding a hypersonic gliding vehicle in the terminal phase to a target
location is considered. In addition to the constraints on its final position coordinates, the
vehicle must also impact the target from a specified direction with very high precision.
The proposed 3-dimensional guidance laws take simple proportional forms. The analysis
establishes that with appropriately selected guidance parameters the 3-dimensional guided
trajectory will satisfy these impact requirements. We provide the conditions for the initial
on-line selection of the guidance law parameters for the given impact direction require-
ment. The vehicle dynamics are explicitly taken into account in the realization of guidance
commands. To ensure high accuracy in the impact angle conditions in an operational en-
vironment, we develop closed-loop nonlinear adaptation laws for the guidance parameters.
We present the complete guidance logic and associated analysis. Simulation results are
provided to demonstrate the effectiveness and accuracy of the proposed terminal guidance
approach.

I. Introduction

Recent interests in developing on-demand global-reach payload delivery capability have brought to the
forefront a number of underlying technological challenges. Such operations will involve responsive launch,
autonomous entry flight, and precision terminal maneuvers. In certain scenarios the mission requirements
call for the payload to impact the target location from a specific direction with supersonic speed. One
example is to impact the target in a direction perpendicular to the tangent plane of the terrain at the target.
The terminal guidance system will be responsible for directing the vehicle to the target and achieving the
desired impact direction. The impact precision requirements under the scenarios considered are very high
and stringent. For instance, the required Circular Error Probable (CEP) of the impact distance is just
3-meter.1 The errors of the impact angles are desired to be within 0.5 deg. The very high speeds throughout
the terminal phase only make it considerably more difficult to achieve these levels of precision. Yet cost
considerations dictate that the terminal guidance algorithm should be relatively simple and computationally
tractable for real-time operations.

While a number of guidance methods can guide the vehicle to the target, not many address the unique
need for impact from a specific direction. One method that can is the so-called “dive-line” guidance approach
in Ref. 2. In this method one or more lines intersecting the Earth are established. The final dive-line
intersects the target, and its direction can be set to the desired direction. The vehicle’s velocity vector is

∗Professor, Department of Aerospace Engineering, 2271 Howe Hall; plu@iastate.edu, Associate Fellow AIAA.
†Senior Aerospace Engineer, 2210 Eighth Street, Bldg. 146, Room 305, David.Doman@wpafb.af.mil, Senior Member AIAA
‡Senior Research Scientist, Suite 202, 1410 Sachem Place, schierman@bainet.com, Associate Fellow AIAA
Copyright c© 2005 by P. Lu, D. B. Doman, and J. D. Schierman. Published by the American Institute of Aeronautics and

Astronautics, Inc. with permission.

1 of 22

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation, and Control Conference and Exhibit
15 - 18 August 2005, San Francisco, California

AIAA 2005-6059

Copyright © 2005 by Ping Lu. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



then steered toward the dive-lines by a cross-product guidance law. Another guidance method discussed
in Ref. 3 fits a single-segment cubic spline between the current vehicle position and the target location,
assuming that the vehicle’s motion is constrained to lie in a vertical plane. The value of the final flight
path angle is one of the parameters that are used to define the cubic spline. The vehicle then is guided
to follow this cubic curve. Under the assumption of perfect tracking, the final flight path angle will be as
required (there is, however, no mechanism to control the azimuth of the final trajectory of the vehicle).
Yet the numerical experiments reported in Ref. 4 suggest that the accuracy of these two methods would
not be adequate for our current applications. Under the linearization approximation, a planar engagement
problem with a final impact angle constraint is formulated as a numerical optimal control problem in Ref. 5
where the impact angle constraint is treated as a penalty term. Aside from the linearization limitations, it
is not clear how realistic the computation requirements will be for such a purely numerical approach in the
current applications we are considering, especially when the problem has to be solved in three-dimensional
motion. Two-dimensional intercept with a final impact angle constraint is again the subject of Ref. 6. The
key assumptions necessary for the analytical solution obtained therein are constant velocity and small error
angles. With these conditions a time-varying bias term is added in a proportional-navigation guidance law
to achieve the final impact angle condition. The constant velocity approximation is completely invalid in
our current applications, since the velocity can have variations up to 60% and more.

We propose an adaptive guidance approach for the above problem in a proportional-navigation form. An
earlier, non-adaptive version of the guidance law in the horizontal plane is analyzed in Ref. 7. In this paper we
present the guidance law in the vertical direction, thus extending the approach to 3-dimensional (3D) flight.
We provide the analysis to establish the achievement of impact on the target by the 3D guided trajectory.
Unlike many other guidance approaches, we do not rely on approximations such as constant velocity or
linearization. The guidance method can guide the vehicle to the target from any initial conditions in 3D
space within the maneuvering capability of the vehicle. Furthermore, the properties of the guided trajectory
discovered in the analysis allow us to conveniently devise guidance logic and guidance parameter selection
criteria to meet the impact direction requirement. These guidance parameters are further updated by closed-
loop nonlinear adaptation laws to ensure high precision in the impact angle conditions. In this paper the
word “adaptive/adaptation” is used in the context of continuously updating certain gains in a closed-loop
fashion to ensure that some specified targeting conditions are accurately achieved. No estimates of unknown
system parameters are involved as in a conventional adaptive control setting.

The efficacy of the proposed approach is demonstrated by the simulations of the trajectories of a hyper-
sonic maneuvering vehicle. The terminal conditions are all met with a high degree of accuracy. Comparison
with optimal solutions reveals interestingly that when the final heading angle is free, the guided trajectories
and guidance commands exhibit behaviors that are quite close to those of the optimal trajectories.

II. Analysis of Guidance Laws

For development purposes, an Earth-fixed coordinate system is defined to be as shown in Fig. 1. The
target is at the origin of the coordinate system. We will focus on a fixed target in the following discussion,
although most of the development would be applicable to a mobile target if the motion variables in the
subsequent sections are replaced by those for the relative motion between the vehicle and the target. The
x-axis is pointed to the East, the y-axis to the North, and the z-axis completes the right-hand system. The
line-of-sight (LOS) from the target to the vehicle is defined by the azimuth angle θ and elevation angle φ,
where −π ≤ θ ≤ π is measured from positive x-axis in a counterclockwise direction, and 0 ≤ φ ≤ π/2. These
angles can be calculated from the known coordinates of the target and navigation-derived coordinates of the
vehicle.

The standard 3-dimensional equations of motion of a gliding vehicle over a flat Earth can be found in,
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for instance, Ref. 8

ẋ = V cos γ sinψ (1)
ẏ = V cos γ cosψ (2)
ż = V sin γ (3)

V̇ = −D
m

− g sin γ (4)

γ̇ =
L cosσ
mV

− g

V
cos γ (5)

ψ̇ =
L sinσ
mV cos γ

(6)

where the position coordinates are x, y, and z. The Earth-relative velocity is V . The flight path angle γ is
the angle between the relative velocity vector and the horizontal plane. The vehicle heading angle ψ is the
angle between the horizontal projection of the velocity vector and north, measured in a clockwise direction
in the horizontal plane. We choose to limit the range of ψ by −π ≤ ψ ≤ π. The gravity acceleration g = 9.81
m/s2 is treated as a constant. Since only unpowered flight is considered, the vehicle mass is also a constant.
The terms D and L are the aerodynamic drag and lift forces which are dependent on the angle of attack α,
altitude z and velocity V . The bank angle of the vehicle is σ.

V

Vcos as shown) 

x (East)

z
vehicle

r y (North)
o

s

Figure 1. Coordinate system and geometry (both γ < 0 and ψ < 0 as shown)

By the definition of the coordinate system, the target is at the origin. Suppose that Ψf and Γf are the
heading angle and flight path angle, respectively, that define the desired impact direction of the vehicle just
before it reaches the target (cf. Fig. 1). Therefore the vehicle needs to achieve the following final conditions

xf = yf = zf = 0 (7)
γf = Γf (8)
ψf = Ψf (9)
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One special case is when Γf = −90 deg (vertical impact). In such a case the constraint (9) must be removed
because ψf is not defined for vertical impact. It should be stressed, however, that the vehicle’s turning
capability usually is the limiting factor for how much final heading adjustment, as defined in Eq. (9) can be
achieved. This is because in the application scenarios under consideration the vehicle is flying at hypersonic
speeds. At such speeds the vehicle cannot make significant heading changes in a short period of time.
Therefore the initial conditions for the terminal guidance phase should be such that it is feasible for the
vehicle to achieve the terminal conditions (7)-(9) subject to its maneuverability constraints.

The function of the terminal guidance system is to determine the direction of the flight, defined by γ
and ψ, to achieve the required final conditions (7)-(9). We propose the following proportional-navigation
guidance laws for the commanded heading angle ψcom and flight path angle γcom

ψ̇com = −λ1θ̇ (10)
γ̇com = −λ2φ̇ (11)

where the guidance parameters λ1 and λ2 are taken to be constants in this section unless otherwise specified.
The horizontal guidance law (10) is fully analyzed in Ref. 7, where it is assumed that the vehicle can track
the guidance command perfectly, i.e., ψ ≡ ψcom. The following two key properties of the guidance law (10)
have been established:7

1. For arbitrary variations of V and |γ| < 90 deg, and for any initial conditions except for θ(0) + ψ(0) =
π/2, the guidance law (10) with λ1 > 1 ensures that s =

√
x2 + y2 → 0. The only exception of

θ(0) + ψ(0) = π/2 corresponds to the case where the vehicle flies away from the target along the LOS
from the target to the vehicle, a pathological case that will not happen in reality.

2. For all λ1 > 2, the trajectory of the vehicle on the xy-plane will converge to a straight line passing
through the origin (target) with a configuration of θ + ψ = −π/2.

The analysis of the vertical guidance law (11) will be greatly simplified when the second property above is
taken into consideration. Suppose that a λ1 > 2 is used. After an initial transient period, the 3-dimensional
trajectory of the vehicle will practically be confined in a vertical plane containing the origin, and the velocity
vector projection on the xy-plane will be directed toward the origin. In this vertical plane the kinematics of
the vehicle may be represented by

ż = V sin γ (12)
ṡ = −V cos γ (13)

where once again, s =
√
x2 + y2 is the range-to-go. The reader is referred to Fig. 1 for the geometry, with

the reminder that the horizontal velocity component V cos γ now points to the origin. The elevation angle
φ then is determined by

φ = tan−1
(z
s

)
(14)

Using Eqs. (12) and (13), the derivative of φ can be readily found to be

φ̇ =
V

r
sin(φ+ γ) (15)

where r =
√
s2 + z2 =

√
x2 + y2 + z2. The derivative of r is also easily obtained

ṙ = −V cos(φ+ γ) (16)

Define
η = φ+ γ (17)

Then η̇ = φ̇+ γ̇. Again let us assume perfect tracking of the guidance command so that γ̇ = γ̇com. By the
guidance law (11) and Eq. (15)

η̇ = φ̇+ γ̇ = (1 − λ2)φ̇ = (1 − λ2)
V

r
sin η (18)
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Dividing Eq. (16) by Eq. (18) results in

dr

dη
=

1
(λ2 − 1)

r cos η
sin η

(19)

Upon integration, the above equation yields

r = c| sin η| 1
λ2−1 (20)

where c > 0 is an integration constant. Consider the case of 0 < η(0) < π for the moment. Substituting Eq.
(20) into Eq. (18) gives

η̇ =
(1 − λ2)V

c
(sin η)

λ2−2
λ2−1 (21)

For any chosen λ2, the sign of η̇ will remain unchanged for all t ≥ 0. In particular η̇ < 0 and η will continue
to decrease to zero if λ2 > 1. In such a case the solution of r in Eq. (20) indicates that r → 0 when η → 0.
Moreover, Eq. (21) also reveals that η̇ → 0 as η → 0 if λ2 > 2. Since η̇ = (1 − λ2)φ̇, η̇ → 0 ⇒ φ̇ → 0.
Hence φ approaches a constant and γ approaches the negative of the same constant. This means that the
trajectory in the vertical sz-plane converges to a straight line passing through the origin with γ = −φ. A
similar analysis leads to the same conclusions in the case where −π < η(0) < 0.

Combining the above analysis and the results in Ref. 7, we have the following conclusions for guidance
laws (10) and (11)

1. For arbitrary variations of V , the guidance laws (10) with λ1 > 1 and guidance law (11) with λ2 > 1
ensure that r =

√
x2 + y2 + z2 → 0.

2. For λ1 > 2 and λ2 > 2, the 3D trajectory of the vehicle will converge to a straight line passing through
the origin (target) with the configuration of θ + ψ = −π/2 and φ+ γ = 0.

Note that even though the guidance laws (10) and (11) are decoupled in two independent channels,
the above analysis establishes the simultaneous satisfaction of the 3 impact conditions in Eq. (7), since
r =

√
x2 + y2 + z2 → 0 is the result. No less noteworthy is the fact that the analysis and global conver-

gence results of the guidance laws (10) and (11) in the 3D space do not require any assumptions of small
perturbations or constant velocity, as is usually required in many other approaches.

It is not difficult to show that if λ2 is not a constant, but time-varying, Eq. (19) can still be integrated
by parts to arrive at a result similar to Eq. (20). The difference is that the constant c in Eqs. (20) and (21)
is replaced by a positive function ceξ where

ξ =
∫

ln | sin η|
(λ2 − 1)2

dλ2 (22)

The presence of the positive variable eξ in Eqs. (20) and (21) does not alter the preceding analysis, therefore
the results remain valid for λ2 that is time-varying. A subtle point in this case is that the above integral is
defined only for η �= 0. This is just an artifact of using η as the independent variable in integrating Eq. (19),
not an indication of an inherent problem with time-varying λ2. In fact, employing the standard stability
theory,9 one can show that starting from any initial condition |η0| < π, η → 0 for any time-varying λ2 > 1 in
Eq. (18). As η → 0, ṙ from Eq. (16) will remain negative, hence r → 0. A parallel argument will apply to a
time-varying λ1 in the lateral guidance law (10). In conclusion the analysis and results given above are still
correct even for time-varying λ1 and λ2. This conclusion will be the basis for the validity of the guidance
laws when λ1 and λ2 are continuously updated by adaptation laws, as will be discussed in Section IV.
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III. Terminal Guidance Logic

A. Guidance Parameter Selections

While other types of interceptor guidance approaches exist that can target the typical final conditions in
Eq. (7), few can conveniently handle the unique final conditions Eqs. (8) and (9). Guidance laws (10) and
(11), on the other hand, offer simple ways to address these requirement by properly selecting the guidance
parameters λ1 and λ2. To see this, we integrate the guidance equation ψ̇com = −λ1θ̇ from t0 to t with the
assumption of perfect tracking ψ̇ = ψ̇com

ψ − ψ0 = −λ1(θ − θ0) (23)

where ψ0 and θ0 are the conditions at t0 which is the first instant when the guidance law (10) is applied.
Suppose that λ1 > 2. By the above discussion the steady-state configuration is

θss + ψss = −π/2 (24)

Let ψss = Ψf as desired. Then the corresponding steady-state value for θ is

Θf = −π/2 − Ψf (25)

Replacing ψ by Ψf and θ by Θf in Eq. (23), we can solve for the unique value of λ1 required to achieve
ψss = Ψf

λ1 = −Ψf − ψ0

Θf − θ0
= 1 +

δψ0

Θf − θ0
(26)

where
δψ0 = ψ0 −

(
−π

2
− θ0

)
(27)

The quantity δψ0 defined above is simply the initial heading offset of the vehicle with respect to the origin
(target). To recap the discussion, if the value of λ1 given by Eq. (26) is greater than 2, this λ1 will ensure
that the final condition (9) is met. Of course the right hand side of Eq. (26) may be less than 2 at t0. When
this happens, a simple strategy will be discussed later to fly the vehicle until the right hand side of Eq. (26)
is greater than 2 with the current value of θ and δψ in place of θ0 and δψ0. From this point on the guidance
law (10) with the λ1 value calculated from Eq. (26) is applied.

A similar discussion applies to guidance law (11). Integrating the guidance equation γ̇com = −λ2φ̇ with
the assumption of perfect tracking γ̇ = γ̇com gives

γ − γ0 = −λ2(φ− φ0) (28)

where γ0 and φ0 are the initial conditions at t0 (where it is understood that this t0 is not necessarily the
same t0 as in the above case). Suppose that λ2 > 2. By the analysis in the preceding section the trajectory
will converge to the configuration where γ = −φ→ γss for some steady-state value of γss. If we require that
γss = Γf , Eq. (28) dictates that the corresponding λ2 must satisfy

λ2 =
Γf − γ0

Γf + φ0
(29)

provided that λ2 > 2 is also met by the result. For steep impact (Γf close to or equal to -90 deg), the
right hand side of Eq. (29) will become greater than 2 only after the vehicle gets close to the target. Thus
a strategy is again to continuously evaluate the value of the right hand side of Eq. (29) with the current
values of γ and φ in place of γ0 and φ0. Once the computed value is greater than 2, the guidance law (11)
is activated with this value for λ2 for the rest of the flight. The λ2 so computed on-board will ensure the
satisfaction of the terminal condition (8) in the guidance.
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B. Lateral Guidance Logic

The analysis in Section II suggests the sequence in which the terminal guidance logic should work: the
lateral guidance will first align the heading of the vehicle nearly toward the target; then the longitudinal
guidance will work to bring the flight path angle to the required value while steering the vehicle to the target,
while the lateral guidance maintains the correct heading. The following lateral guidance logic is designed for
the heading alignment.

1. If Γf = −90 deg in the constraint (8) or constraint (9) is not imposed, a constant λ1 > 2 is used
throughout the entire trajectory in the guidance law (10) which is responsible for the lateral steering.

2. If Γf �= −90 deg, constraint (9) is imposed, and the λ1 calculated from Eq. (26) at the guidance
initiation is less than 2, the bank angle of the vehicle is commanded by

σcom = σmaxsgn(Θf − θ) (30)

where Θf is given in Eq. (25) and θ is the current value of the variable. The sign function sgn(x) = 1
when x > 0, and sgn(x) = −1 when x < 0. The pre-set limit σmax ∈ (0, 90) deg is a maximum bank
angle to be used for turning. While the command (30) is applied, the value of λ1 computed from Eq.
(26) is continuously monitored with δψ0 and θ0 replaced by their current values. At the moment when
the λ1 so computed is greater than 2, the current time is set to be t0, and the guidance logic is switched
to Step 3 below for the rest of the trajectory.

3. If Γf �= −90 deg, constraint (9) is imposed, and the λ1 calculated from Eq. (26) at t0 is greater than
2, this λ1 is used in the guidance law (10) for the rest of the terminal phase flight.

A discussion on the above lateral guidance logic is in order. Step 1 is the simple case where the constraint
(9) is not required. Thus a λ1 > 2 in the guidance law (10) will suffice according to the conclusions in Section
II. When the constraint (9) is enforced, the lateral guidance logic should always end in Step 3, for the selection
of λ1 described in Step 3 ensures the satisfaction of condition (9). The analysis below establishes that even
if the trajectory starts in Step 2, the logic will eventually switch into Step 3.

From the definition of θ = tan−1(y/x) and Eqs. (1-2), it is easy to show that

d(Θf − θ)
dt

= −θ̇ = −V cos γ sin δψ
s

(31)

where δψ = ψ − (−π/2 − θ). From Eq. (6) and the above equation, we also have

δψ̇ =
L sinσ
mV cosψ

+
V cos γ sin δψ

s
(32)

Equation (31) indicates that the rate of Θf − θ is essentially proportional to δψ for small |δψ|. Hence Θf − θ
is a slower variable and δψ is a faster variable with respect to any changes in σ. It can be shown that the
bank angle command law in Eq. (30) will always increase the ratio

δψ

Θf − θ

in all practically possible cases. Therefore as this ratio increases, there will be an instant when it is greater
than 1, and the λ1 computed from Eq. (26) becomes greater than 2, where δψ0 = δψ and θ0 = θ are used
in Eq. (26). Thus Step 2 in the above logic will eventually lead to Step 3. This conclusion, of course, is
contingent on the condition that there is sufficient time for the vehicle to make the turn. Alternatively,
the misalignment in the velocity heading should not be too large to overcome in a reasonable time period
compared with the flight time in the terminal phase.

It should be commented that the bank angle given by Eq. (30) for the initial turning is neither unique
nor necessarily optimal for a given case. Depending on the initial conditions, there may be different bank
angle profiles in this initial turn, possibly even with opposite sign than the sign determined in Eq. (30),
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Figure 2. Flow chart for the lateral guidance logic

that can still allow the vehicle to meet its final heading requirement (see an example in Section IV). But the
determination of such alternate bank angle will require repeated numerical integrations of the equations of
motion for the vehicle. What the strategy in (30) offers is simplicity and assured eventual achievement of
λ1 > 2 as computed from Eq. (26), a key requirement in our guidance approach.

The above lateral guidance logic is included in the flow chart in Fig. 2. The other parts of the chart,
the computation of bank angle/angle of attack commands and further adaptation of λ1, will be discussed in
Sections III-D and IV.

C. Longitudinal Guidance Logic

Once the lateral guidance logic has nearly aligned the heading of the vehicle to the target, the longitudinal
guidance logic will begin to work toward achieving the impact conditions (7) and (8). As in the case of
lateral guidance, certain logic in addition to guidance law (11) will be needed, which is mainly driven by
the condition (8) and the desire to maximize the impact velocity. Recall that the analysis in Ref. 7 has
shown that under guidance law (10) the angle ψ will approach −π/2 − θ monotonically. For the purpose
of longitudinal guidance activation, the end of the heading alignment phase under Step 1 or Step 3 in the
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lateral guidance logic may be marked by the condition

|δψ| =

∣∣∣∣∣ψ + Θf +
π

2

∣∣∣∣∣ ≤ ε (33)

where ε > 0 is a small pre-specified constant. When the constraint (9) is not imposed, the above condition
is replaced by

|δψ| =

∣∣∣∣∣ψ + θ +
π

2

∣∣∣∣∣ ≤ ε (34)

The following sequential longitudinal guidance logic is devised:

1. From the beginning of the terminal guidance phase at t = 0 to the end of the heading alignment phase,
the vehicle will fly an angle of attack profile defined by

αtrans = α∗ + (α0 − α∗)e−t/T (35)

where α0 is the angle of attack of the vehicle at t = 0, and α∗ is the angle of attack at which the vehicle
achieves its maximum lift-to-drag (L/D) ratio (α∗ can be a function of Mach number if needed). The
time constant T > 0 is a pre-selected parameter to ensure reasonably fast transition from α0 to α∗.

2. From the end of the heading alignment phase to the point where the right hand side of Eq. (29)
becomes greater than 2, a λ2 < 1 is used in guidance law (11).

3. After the instant when the λ2 calculated from Eq. (29) is greater than 2, this value of λ2 is used in
guidance law (11) until the impact (λ2 remains the same value in this period)

While the vehicle is turning in the heading alignment phase, the objective for flying the transition angle of
attack profile in Eq. (35) is to preserve the energy of the vehicle so that the impact velocity can be close
to the maximum possible value. This maneuver turns out to be quite similar to what an optimal trajectory
would do, as will be seen later. In the second step of the above logic, the vehicle prepares for the final
maneuver to the target. It is in this phase where the guidance law (11) begins to drive the α to decrease
from close to α∗ to a negative value (we assume that the magnitude of the bank angle is limited within 90
deg). The value of λ2 should be moderate in this period, for an overly aggressive flight path angle command
could result in a very late occurrence of λ2 > 2 from Eq. (29), leaving little time for the final maneuver to
satisfy the condition (8). Note that a λ2 < 1 can be used in this phase even though the analysis in Section
II states that λ2 > 1 is needed for r → 0. This is because η = φ + γ is typically positive and less than π/2
(|γ| is still rather small) in this period. By examining Eqs. (20) and (21), we can show that even for λ2 < 1,
η will increase and r will decrease, only not to zero. But we only need r to decrease in this phase. The last
phase fulfills the requirement for the satisfaction of the impact condition (8). Note that the lateral guidance
law (10) with a constant λ1 > 2 remains in force throughout all the above longitudinal logic steps.

The above longitudinal guidance logic is incorporated in the flow chart in Fig. 3. The other components
of Fig. 3, including the computation of bank angle/angle of attack commands and adaptation of λ1 and λ2,
will be discussed in the next section and Section IV.

D. Bank Angle and Angle of Attack Commands

The realization of the guidance commands from Eqs. (10) and (11) can be through the modulations of
bank angle σ and angle of attack α which in turn will affect the vehicle dynamics Eqs. (4-6). To compute
the required bank angle command σcom and α-command αcom, we first find the required aerodynamic lift
force to generate the guidance commands ψ̇com and γ̇com from Eqs. (5) and (6)

Lcom
m

= sgn (V γ̇com + g cos γ)
√

(V ψ̇com cos γ)2 + (V γ̇com + g cos γ)2 (36)
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The sign function in the above equation determines whether a positive or negative lift force is commanded
(again, with the assumption of |σ| < 90 deg). Let CLcom be the lift coefficient required to produce Lcom.
Therefore

1
2
ρ(z)V 2SrefCLcom = Lcom (37)

where ρ is the atmospheric density as a function of altitude z, and Sref the reference area of the vehicle.
Based on the required CLcom found in the above equation, the aerodynamic model of the vehicle is iterated
to solve for the corresponding angle of attack αcom at the current Mach number.

The commanded bank angle σcom is calculated from Eq. (6) with ψ̇ replaced by ψ̇com and L replaced by
Lcom

σcom = sin−1

(
mV ψ̇com cos γ

Lcom

)
(38)

In the case where the value of CLcom computed from Eq. (37) demands an αcom that is beyond the
allowable range for the vehicle, a scaling of the guidance commands may be done. Suppose that L̄max
represents the largest lift force feasible at the current condition (which can be in the positive or negative
direction, depending on the sign of (V γ̇com + g cos γ)). Let both ψ̇com and γ̇com be scaled by Kmax > 0 so
that the total resulting lift force is equal to L̄max. To determine Kmax, replace ψ̇com and γ̇com by Kmaxψ̇com
and Kmaxγ̇com, and Lcom by L̄max in Eq. (36). The value of Kmax is the positive root of the quadratic
equation

K2
max

[
V 2(ψ̇2

com cos2 γ + γ̇2
com)

]
+Kmax(2V gγ̇com cos γ) +

[
g2 cos2 γ − L̄2

max

m2

]
= 0 (39)

A solution of Kmax < 1 indicates that the guidance commands exceed the vehicle’s capability. The guidance
commands in both channels in such a case need to be scaled back by the same factor of Kmax. Alternatively,
separate scaling of each channel could be performed. Let Kψ > 0 and Kγ > 0 be the weightings on ψ̇com
and γ̇com, respectively. Within the current limit of the lift, the emphasis of the guidance can be directed in
one channel at the expense of less guidance effort in the other channel. For instance, we may express Kψ by
using Eq. (36) with the substitutions of ψ̇com and γ̇com by Kψψ̇com and Kγ γ̇com, and Lcom by L̄max

Kψ =
1

|ψ̇com|V cos γ

√
L̄2
max

m2
− (KγV γ̇com + g cos γ)2 (40)

The selection of a Kγ ≤ Kmax will result in a Kψ ≥ Kmax, placing more emphasis on the heading control
than on flight path angle control. The reverse is also true.

In the event when |Lcom| > |L̄max|, and once the scaling factors have been determined, the angle of
attack and bank angle commands are still computed from Eqs. (37) and (38), only with Lcom replaced by
L̄max and ψ̇com by Kψψ̇com.

E. Body Acceleration Commands

Another option for flight control system to realize the guidance commands generated by the guidance
laws (10) and (11) is to track appropriate body acceleration commands. The advantage of this design is
that the feedback of the controlled variables (accelerations) can be directly provided by accelerometers. The
guidance system will determine the acceleration commands to be tracked so that the velocity vector is steered
according to Eqs. (10) and (11).

Define a velocity frame which has its unit vectors as

iv =
V

V
(41)

jv =
V × R

‖V × R‖ (42)

kv = iv × jv (43)
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where V is the relative velocity vector and R is the radius vector from the center of the Earth to the vehicle.
The vehicle’s acceleration in this velocity frame is given by

a = V̇ iv + ψ̇V cos γjv − γ̇V kv (44)

The body frame fixed to the vehicle is defined in standard convention: the xb-axis coincides with the
body longitudinal axis, the zb-axis points down, and the yb-axis completes the right hand system.With
the assumption of zero sideslip, the coordinate transformation from the velocity frame to the body frame
consists of a sequence of two rotations. The first is the rotation of a bank angle σ about the velocity vector
(iv direction); the second an angle of attack α about the yb-axis. Using the coordinate transformation and
the expression of the acceleration in the velocity frame in Eq. (44), we obtain the corresponding commanded
body accelerations (including gravity) in the yb and zb axes as

nycom = ψ̇comV cos γ cosσcom − γ̇comV sinσcom (45)

nzcom = V̇com sinαcom − ψ̇comV cos γ cosαcom sinσcom − γ̇comV cosαcom cosσcom (46)

where ψ̇com and γ̇com are from the guidance laws (10) and (11), and σcom and αcom are computed in Section
III-D above. The value of V̇com is from the right hand side of Eq. (4) with α = αcom in calculating the drag
force term D. The command inputs to the control system in the inner loop will thus be nycom and nzcom .
Note that only when αcom ≈ 0 and σcom ≈ 0 can nycom and nzcom be approximated by

nycom = ψ̇comV cos γ (47)
nzcom = −γ̇comV (48)

IV. Adaptive Update of Guidance Parameters

Assuming perfect navigation data, the above proposed guidance approach typically renders a precision
of within 1 meter on impact position. The impact angle conditions can be met in many cases within 1
deg. But in some other cases the errors could reach as high as 3 to 4 degrees. The possible sources of
errors include: (1) the guidance commands briefly exceed the maneuverability of the vehicle; (2) the rate
and acceleration limits on the guidance commands are momentarily saturated; (3) the analyses are based on
steady-state conditions, yet the the flight is relatively short so the steady state has not been fully achieved at
the termination of flight; (4) appreciable aerodynamic uncertainty exists, due to either modeling mismatch
or the effects of ablation sustained during entry flight; (5) the analyses of the guidance laws are based only
on point-mass dynamics, and the guidance parameter selections assume perfect tracking of the guidance
commands; (6) the guidance commands are only updated at a finite rate. Adding to the sources of errors in
an operational environment will be limited navigation resolution, winds, and modeling uncertainties. Most
of these issues are present to one degree or another in all other guidance and control law synthesis efforts,
and most of the time their influences on the performance of the system are secondary. But in the case of
very high-precision applications such as discussed in this paper, their effects become non-trivial.

In the guidance logic developed so far, the two parameters λ1 and λ2 are constants once their values
are determined (even though by on-line calculations from Eqs. (26) and (29)). Recall that these values
are selected on the basis of satisfying the impact angle conditions. But any of the above possible reasons
can cause the actual trajectory to be different, thus the already determined constant values of λ1 and λ2

may no longer ensure the precision of the impact angle conditions. The application scenarios considered in
this paper rule out the options of adopting more elaborate guidance means or relying on intensive on-line
computation for guidance command generation. Within the framework of the current approach, an effective
way to further enhance the precision is appropriate closed-loop adaptation for λ1 and λ2. We present in the
following a novel approach to establish the adaptive update laws for the problem at hand.

Let us consider the vertical guidance law (11) first. We will use the altitude z as the independent variable
for the update of λ2. Note that Eq. (11) has the same form whether the differentiation is with respect to time
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or altitude (or any other independent variable). Treat λ2 as a z-dependent function instead of a constant.
Integrating both sides of Eq. (11) once, the right hand side by parts, one obtains

γ − γ0 = −λ2φ+ λ20φ0 +
∫ z

z0

φλ′2dz (49)

where z0 is an arbitrary initial altitude, z a later altitude, and λ′2 = dλ2/dz. The subscript “0” indicates the
values at z0. Suppose that λ2 remains greater than 2 even though it is varying. From the conclusion at the
end of Section II we know that as z → 0, γ+ φ→ 0. With a given initial value for λ2, we want to find λ′2 so
that γ → Γf , thus φ→ −Γf . In addition, we will seek the simplest form of update of λ2 so λ′2 is a constant.
As a result, at z = 0 we have λ2 = λ20 − z0λ

′
2. At z = 0, the substitution of these conditions into Eq. (49)

produces

Γf − γ0 = (λ20 − z0λ
′
2)Γf + λ20φ0 + λ′2

∫ 0

z0

φ dz (50)

Since φ = φ0 at z0 and φ = −Γf at z = 0, the integral in above equation is further approximated by the
well-known trapezoidal rule for quadratures∫ 0

z0

φ dz ≈ 1
2

(Γf − φ0) z0 (51)

Replace the integral in Eq. (50) by the above relationship, and solve for λ′2

λ′2 = −2
[(1 − λ20)Γf − γ0 − λ20φ0]

z0(φ0 + Γf )
(52)

Since z0 is arbitrary, we can let z0 be the current altitude at any instant and drop all the subscripts 0 in
the above equation. Moreover, the coefficient 2 in the above equation may be replaced by a constant gain
κ2 > 0 to allow the flexibility of tuning for desired adaptation rate. Recall that the differentiation in the
above equation is with respect to the altitude z. Our final closed-loop adaptation law for λ2 is

dλ2

dz
= −κ2

[(1 − λ2)Γf − γ − λ2φ]
z(φ+ Γf )

=
κ2

z

(
λ2 +

Δγ
Δφ

)
(53)

where
Δφ = (−Γf ) − φ, Δγ = Γf − γ (54)

If for any reason the adaptation with time as the independent variable is preferred, the adaptation law is
simply

λ̇2 =
κ2

z
V sin γ

(
λ2 +

Δγ
Δφ

)
(55)

It is worth noting that one would not be able to derive adaptation law (55) if time is used as the independent
variable at the outset.

In Step 3 of the longitudinal guidance logic, the starting value for λ2 is determined by Eq. (29) at the
instant when the right hand side of Eq. (29) becomes greater than 2. The subsequent values of λ2 are
then updated according to Eq. (53) or (55) instead of remaining at the same constant. As the trajectory
approaches the desired configuration where Δφ = Δγ = 0, it can be shown by using L’Hospital’s rule and
the guidance law (11) that

lim
Δγ→0, Δφ→0

(
Δγ
Δφ

)
→
(
γ̇

φ̇

)
= −λ2 (56)

Therefore λ̇2 → 0 by the adaptation law (55), i.e., the gain adaptation stops. The validity of the guidance
law (11) under a varying λ2 has been established at the end of Section II.

A similar process applied to the lateral guidance law (10) will lead to the update law for λ1 as

dλ1

ds
= −κ1

[(1 − λ1)Ψf − ψ − λ1(θ + π/2)]
s[θ + Ψf + π/2]

=
κ1

s

(
λ1 +

Δψ
Δθ

)
(57)

13 of 22

American Institute of Aeronautics and Astronautics



where
Δθ = −(Ψf + π/2) − θ, Δψ = Ψf − ψ (58)

The parameter κ1 > 0 is a constant gain, and the derivative in the adaptation law Eq. (57) is with respect
to the range-to-go s. If time is desired to be the independent variable, the adaptation law is then

λ̇1 = −κ1

s
V cos γ

(
λ1 +

Δψ
Δθ

)
(59)

Again, it can be shown by using L’Hospital rule and guidance law (10) that as the trajectory approaches the
final configuration where Δθ = Δψ = 0, we will have

lim
Δθ→0, Δψ→0

(
Δψ
Δθ

)
→
(
ψ̇

θ̇

)
= −λ1 (60)

Thus λ̇1 → 0 by Eq. (59), and the adaptation of λ1 stops. The adaptation of λ1 is not needed when the
final heading constraint (9) is not imposed, because a constant λ1 > 2 is all that is required in this case.
This “bypass” is clearly shown in Fig. 2. The complete lateral and longitudinal guidance logics including
the guidance parameter adaptation are illustrated in Figs. 2 and 3.

To avoid the singularities of the adaptation laws (53) and (57) at the origin where z = s = 0, the
parameter adaptation is stopped at a distance before the origin is reached without practical impact on the
precision, for the effects of the guidance parameter adaptation are diminished as the vehicle gets very close
to the target.

V. Simulations

The adaptive terminal guidance logic presented in Sections II–IV is applied in simulations to the guid-
ance of a hypersonic lifting vehicle of about 680 kg (1,500 lb) in weight. The vehicle features a bi-conic
configuration with 4 control surfaces. The nonlinear aerodynamic model of the vehicle is Mach- and angle of
attack-dependent. The first scenario is for vertical impact on the target, so the final heading constraint (9) is
not imposed. The second example involves non-vertical impact and constrained final heading condition (9).
The initial conditions for the terminal phase flight in both cases are those at the end of the simulated entry
trajectories of the vehicle. The continuities in both bank angle and angle of attack from their respective
values at the end of entry flight are preserved in the terminal phase trajectories. The atmospheric properties
used in the simulations are based on the 1976 U.S. Standard Atmosphere.10 The 3DOF equations of motion
over a rotating spherical Earth are used to simulate the vehicle trajectories. The guidance commands are
generated at 2 HZ rate and then subject to maximum allowable magnitude, rate and acceleration limits
before they are applied in the simulations. Even though the assumption of perfect tracking of the guid-
ance commands is made in the guidance law analysis, the control limits and finite guidance update rate do
cause imperfect tracking in the simulations. Still the feedback nature of the guidance laws and the guidance
parameter adaptation ensure excellent results as will be seen.

In both cases the corresponding open-loop optimal trajectories are also found for comparison purposes.
The performance index of optimization is the maximization of the final velocity. The optimal control problem
is converted to a nonlinear programming problem by parameterizing the time histories of bank angle and
angle of attack with piecewise linear functions of time. The equations of motion are numerically integrated
from the given initial conditions to obtain the state histories, and the final state in particular. The impact
condition constraints (7), (8) and (9) (when it is imposed) are enforced. A sequential quadratic programming
algorithm in MATLAB is then used to solve the nonlinear programming problem. The starting guesses to
the optimization problems are completely independent of the simulated trajectories under the guidance laws.
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A. Vertical Impact

In this case Γf = −90 deg in constraint (8), and constraint (9) is ignored. The initial conditions are
given as

s0 = 179.387 km, z0 = 40.002 km, θ0 = −173.14 deg
V0 = 2304 m/s, γ0 = −1.46 deg, δψ0 = 5.19 deg (61)
σ0 = 34.58 deg, α0 = 28.94 deg

In this case a constant λ1 = 3 is used in the lateral guidance law (10) throughout the terminal phase
(Step 1 of the lateral guidance logic). It is easy to verify that the given initial conditions do not make λ2 > 2
when λ2 is calculated from Eq. (29). Hence the longitudinal guidance logic steps described in Section III-C
are employed to steer the trajectory in the vertical direction. For the vehicle model used, the maximum
L/D ratio takes places at about α∗ = 11 deg in the range of Mach number variations during the terminal
guided flight. Thus α∗ = 11 deg, and T = 25 s are used in Eq. (35). A value of λ2 = 0.8 is used in Step 2 of
the longitudinal guidance logic until the right hand side of Eq. (29) becomes greater than 2. The simulation
stops when the altitude reduces to zero.

The final impact conditions from the simulation are

sf = 0.05 m, γf = −89.97 deg, Vf = 750.7 m/s (Mach 2.21) (62)

It should be kept in mind that even though the above precision level in miss distance and impact angle may
seem unrealistic because no navigation errors are included, the simulations are only intended to demonstrate
the capability of the guidance algorithm alone. In comparison to the above final velocity in the closed-loop
simulation, the open-loop optimal solution yields a final velocity of 811.1 m/s (Mach 2.38). It should be
mentioned that in the optimal solutions the bank angle and angle of attack profiles are not constrained by
rate and acceleration limits, which contributes (unrealistically) to the higher final velocity. Figure 4 shows
the comparison of the variations of flight path angle versus altitude and Mach number versus range-to-go
along the guided and optimal trajectories. The three-dimensional flight paths for both the optimal and
guided trajectories are depicted in Fig. 5. Figure 6 contains the variations of bank angle and angle of attack.
It is observed that, despite two completely different approaches, the qualitative behaviors of the bank angle
profiles along the optimal and guided trajectories, as well as the angle of attack profiles, are remarkably
similar. At about 45 seconds into the terminal phase flight, the right hand side of Eq. (29) becomes greater
than 2, and λ2 is switched from 0.8 to this value. The bank angle and angle of attack histories in Fig. 6
clearly indicate this change. Remarkably, the optimal bank angle and optimal angle of attack profiles in Fig.
6 exhibit similar transitions (a moment later) even though nothing in the formulation of the optimal control
problem forces such behaviors. The initial guesses to the optimal profiles used in the numerical optimization
are not at all related to the guided trajectories.

It is shown in Ref. 11 that in one-dimensional cases, a proportional-navigation guidance law with a
proportional constant of 3 approximates an optimal guidance law. The observations made here lead to
an interesting conjecture: when the final heading angle is not constrained, the guidance logic developed
in Section III for 3-D flight may also be made to approximate the optimal guidance solution by selecting
appropriate values for the parameters in the logic (e.g., λ1, λ2, ε and T ).

The guidance parameter adaptation law (53) developed in Section IV is also implemented in the simu-
lations (λ1 remains a constant of 3 in this case because no final heading constraint is present). A gain of
κ2 = 4 is used. At about 87 seconds into the terminal phase, the right hand side of Eq. (29) yields a value
greater than 2. This is when Step 3 of the longitudinal guidance logic is activated, and the adaptation for
λ2 by Eq. (53) begins at the same time. Figure 7 shows the history of λ2. The changes in λ2 are relatively
small. The adaptation stops about one second before impact. The high precision of the final flight path
angle shown in the final conditions (62) is representative of the effectiveness of the gain adaptation.
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Figure 4. Flight path angle and Mach number for the vertical impact case

B. Non-Vertical Impact

The terminal values in constraints (8) and (9) are specified to be

Γf = −60 deg (63)
Ψf = 88 deg (64)

The initial conditions are

s0 = 366.065 km, z0 = 45.060 km, θ0 = −172.68 deg
V0 = 2962.67 m/s, γ0 = −0.87 deg, δψ0 = −3.97 deg (65)
σ0 = 27.61 deg, α0 = 31.74 deg

These initial conditions are from the same entry trajectory as in previous case, but the entry flight is
terminated earlier to allow more time for the terminal phase guidance to meet the heading constraint at the
impact. The above initial conditions cause the lateral guidance logic to start in Step 2 of Section III-B, and
the longitudinal guidance logic in Step 2 of Section III-C. Other simulation settings and parameters are the
same as in the previous case.

The final conditions of the guided trajectory in this case are

sf = 0.03 m, γf = −60.02 deg, ψf = 88.01 deg, Vf = 943.1 m/s (Mach 2.77) (66)

Figure 8 shows the 3D trajectories. The ground tracks in Fig. 8 indicate that the trajectories now approach
the same target from a direction different than in Fig. 5, a result of the final heading angle constraint now
enforced. The optimal solution in this case gives a final velocity of 1110.7 m/s (Mach 3.26). Figure 9 reveals
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Figure 5. Three-dimensional trajectories for the vertical impact case

the reason why the guided trajectory in this case has appreciable performance difference as compared to the
optimal trajectory. Step 2 in the lateral guidance logic in this case commands initially a large negative bank
angle. The optimal bank angle profile, on the other hand, decides to stay nearly constant at about +25
deg for almost 90 seconds. This is a feature that can only be discovered with extensive numerical searches
required in an optimal solution. This key distinction contributes dominantly to the performance difference.
As discussed in Section III-B, Step 2 in the lateral guidance logic is designed for its simplicity, not optimality.
For some other initial conditions, the lateral guidance logic can actually produce a trajectory much closer
to the optimal one. Nonetheless we choose the current case to illustrate the possible difference.

Another noteworthy phenomenon in the optimal bank angle history in Fig. 9 is that the bank angle at
the end is not zero. This means that the optimal trajectory is still turning at the end, which makes sense
because for the same amount of heading change, smaller bank angle will be needed near the end where the
velocity is lowest along the trajectory. Without using large bank earlier the trajectory is kept aloft, thus
minimizing the velocity loss. But nonzero bank angle at the end also suggests that the vehicle’s heading angle
is not in steady state. Therefore the timing and the bank angle must match perfectly to achieve the specified
final heading angle. Again this is something that requires heavy computation, and cannot be attained with
simple logic.

The parameter adaptation laws (53) and (57) with κ1 = κ2 = 4 are responsible for the high accuracy in
the final conditions of the impact angles in this case. Without the adaptation, the final conditions would
have been γf = −58.75 deg and ψf = 88.36 deg, respectively. In Fig. 10 the variation of λ1 is plotted.
The execution of Step 2 of the lateral guidance logic (Eq. (30)) takes about 10 seconds at the beginning
of the terminal phase. After that, Step 3 of the lateral guidance logic becomes active, and this is when
the adaptation of λ1 starts. The value of λ1 stays nearly constant until Step 2 (and then Step 3) of the
longitudinal guidance logic begins to take effect. The coupling effects of the longitudinal maneuvers cause the
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adaptation law (57) to sense the need for final adjustments in the heading in order to meet the constraint
Eq. (64). The large variation of λ1 in Fig. 10 underscores the difficulty of changing the heading of a
hypervelocity vehicle, even for relatively small corrections. Figure 11 contains the adaptation history of λ2

for this case, which is comparatively minor.

The remarkable possibility of achieving near optimality by the guidance logic proposed in the case of
unconstrained final heading angle is even more evident in this example. For the same initial conditions as
in Eq. (65), suppose that only constraint (63) is required, not Eq. (64). The lateral guidance law is just
Eq. (10) with a constant λ1 = 3 throughout the trajectory. The guided trajectory this time yields a final
velocity of 1, 030.7 m/s with γf = −60.03 deg and sf = 0.0004 m. In contrast, the optimal trajectory
without the final heading constraint Eq. (64) produces a final velocity of 1116.5 m/s. The performance
difference between the two is significantly smaller in this case. Figure 12 illustrates the comparison of the
angle of attack and bank angle histories. Except initially, the angle of attack profiles match quite well in
about 2/3 of the flight. The bank angle histories, on the other hand, are very close to each other throughout
the trajectory.

VI. Conclusions

The need to guide a hypersonic lifting vehicle in terminal phase intended to impact a ground target with
stringent specified impact direction arises from a recent technology development effort. We have found that
an adaptive proportional-navigation guidance approach is effective to this problem and easy to implement.
Our analysis establishes the theoretical attainment of the targeting conditions by the guided trajectories
without relying on linearization or other simplifying assumptions. We provide closed-form conditions for the
on-line selection of the initial values of the guidance parameters for satisfying the unique final impact angle
requirements. For ensured high precision in the impact angle conditions, continuous closed-loop update of
these parameters are necessary. For this purpose we further develop nonlinear parameter adaptation laws.
The guidance logic developed is demonstrated to be accurate in 3 degrees-of-freedom simulations where the
full nonlinear point-mass dynamics are included. It is interesting to note that in the absence of a final
heading constraint, the trajectories under the proposed guidance logic behave in a similar fashion to optimal
solutions that are generated off-line.
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Figure 8. Three-dimensional trajectories for the non-vertical impact case
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Figure 9. Angle of attack and bank angle for the non-vertical impact case with final heading constraint
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Figure 12. Angle of attack and bank angle for the non-vertical impact case without the final heading constraint
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